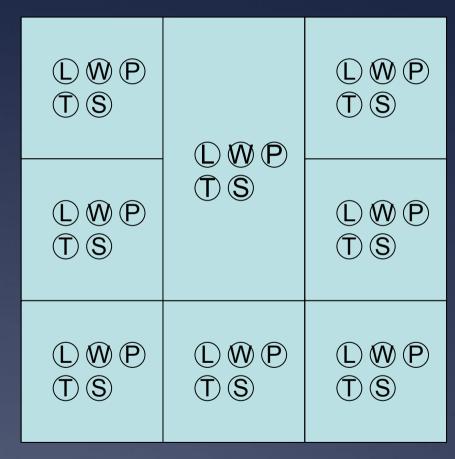
Dithus: Device discovery

Design/status

٧.

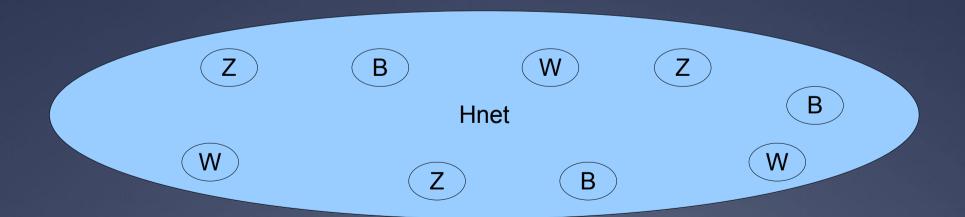
Rune Torbensen


Contents

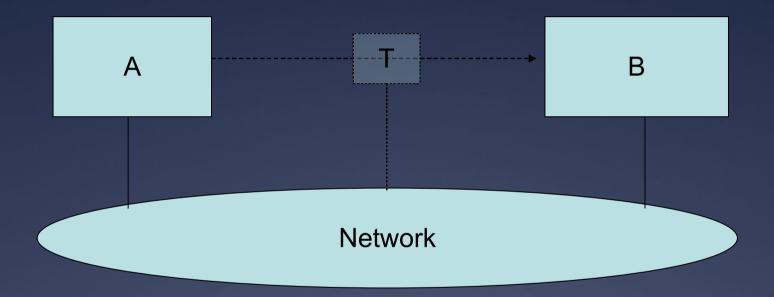
- * Introduction
- * Device discovery design
- * Experiments: new and existing equipment

Introduction: Case study

Realistic home automation


- * Consumer electronics
 - * Cost sensitive
 - * Reuse of infrastructure
 - * No additional functionality
 - * No app-logical management for enddevices
- * House Case study
 - * 8 rooms with each 5 devices.
 - * 4 different wireless networks
- * Competitive
 - * Functional equal end-devices are interchangeable
- * Generic communication infrastructure

L=Lamp, W=heater, P=PIR, S=lux-sensor, T=temp-sensor


One home network

- * Different devices
- * Different vendors and protocols
- * New device and existing devices
- * In one big network

Problem domain

* Two arbitrary unfamiliar applications: A using B

A: Controller application

B: Sensor application

Application models

Service provider Sensor:

Sensor hardware

Service consumer Controller:

application

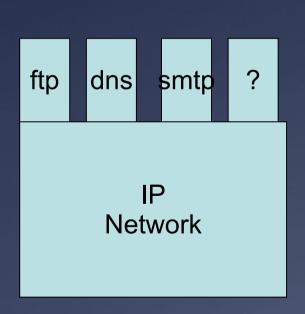
Network stack

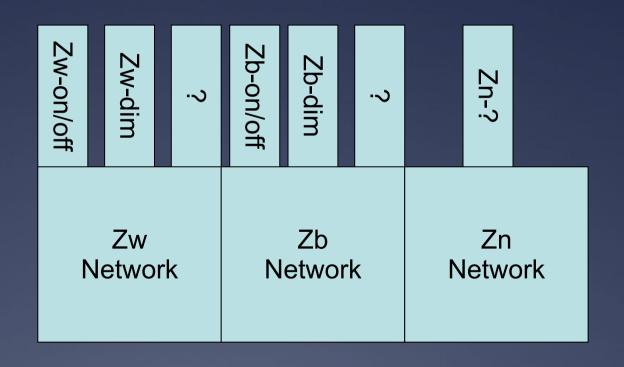
Kernel

Std. drivers

application

Network stack


Kernel

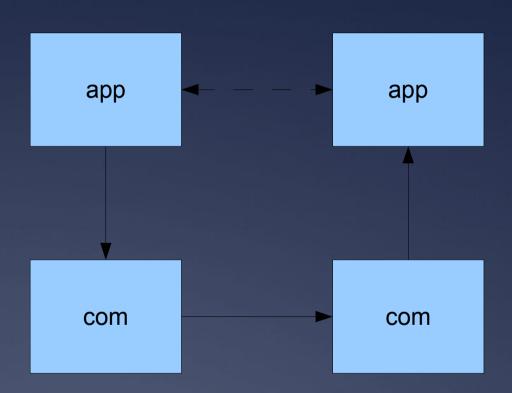

Std. drivers

Home Automation protocols

Application protocols:

Internet protocols and end-device application protocols

Device discovery design

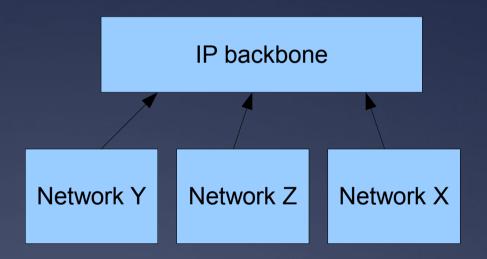

Device discovery

- * Ability to enroll new devices into a running system
- * Minimal user involvement
- * Includes previously unknown device types

Device discovery: Basic idea

Separating problems:

- * Application translation
- * Communication bridging


Heterogeneous network

One network:

- * IP based backbone
- * All nodes reachable

Sub networks

* Y,Z,X etc.

Sub networks

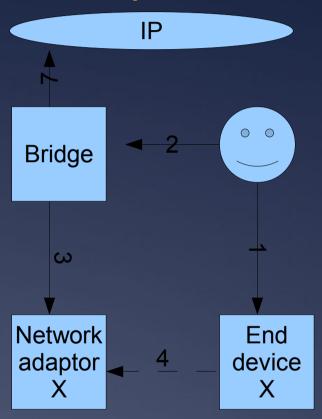
Required Methods

- * Include devices in to the network
- * Exclude devices from the network
- * List of visible/registered devices on the network
- * Send/receive data to/from a device on the network.
- * Device descriptor from a device.

Device discovery stack

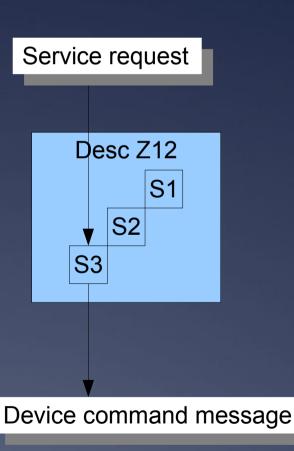
Rich description language

- * Range of application protocols
- * Support new concepts (SI units)


Descriptor exchange protocol

- any file based rich description language
- * Simple description i.e. type id.
- Heterogeneous net (Hnet) data transport
- * No data semantics assumptions
- * Hnet address (ip:port)
- Abstracts wireless network technology
- * Methods for H-net address discovery.

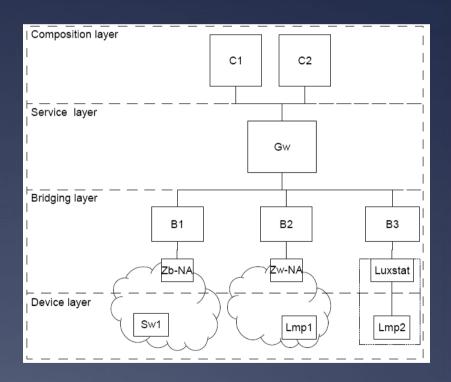
Application/gateway	
Description language	
Descriptor exchange protocol	
Heterogeneous data transport protocol	
IP	X-network


End-device enrollment sequence

- User: join button on end-device
- 2. User: include button on bridge
- Bridge sends include command to network adaptor.
- 4. End-device joins X-network adaptor (x methods)
- Bridge sends Get_Descriptor to new device.
- Bridge receives and buffers new descriptor.
- Bridge sends UDP broadcast: Services_updated

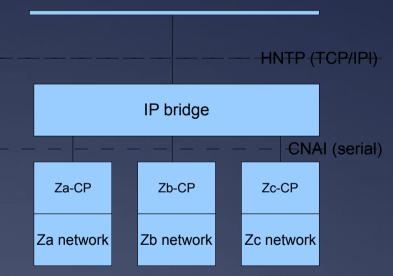
Description/translation language

```
Simple devices:
<!-- setvalue(1, "Light Intensity", 25);
 -->
<service type="set" desc="Light</pre>
   Intensity">
      <parameters>
        <parameter type="int" min=""</pre>
   max="" step="" scale=""
   unit="Lumen"/>
      </parameters>
      <write>
        <byte>01</byte>
        <byte>04</byte>
        <byte module="abx" arg1="9"</pre>
   arg2="17" arg3="{parameter:1}"/>
      </write>
</service>
```



Experiments: New and existing equipment

System overview


Embedded IP devices on LAN

- * Controllers (just software)
- * Translator/service gateway
- * IP bridges
- * Wireless network adapters
- * End-devices:
 - * Push button
 - * Lamps wall plugs
 - * Light control subsystem
- * Test of end-devices

Bridge model

- * HNTP: Heterogeneous network transport protocol
- * Two parts:
 - * Generic IP bridge part
 - * Network adapters:
 - * Zn networks
- * CNAI: Common network adapter interface
 - * En network manager
 - * Virtuelle adresser (1-255)
 - * Payload-tunnel to end-device
 - * Vport, len, payload...
 - * C. network commands (via 0)
 - * Include/exclude

Udviklingsplatform

- * Linux boks
 - * IP stack og usb port
 - * Serial port to usb konverter
- * God udviklingsplatform:
 - * Gcc, Gdb debugger, Eclipse.
 - * Mange pakker.
 - * NSLU: rigelig hukommelse og hastighed.
 - * Stadig "embedded" device.
- * Software
 - * IP til Seriel port protocol conv.
 - Event UDP broadcast
 - * Telnet command

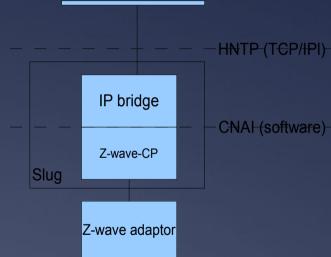
Experiment: New End-devices

Bluetooth network adaptor:

- * Send message
- * Include method
- * Get descriptor

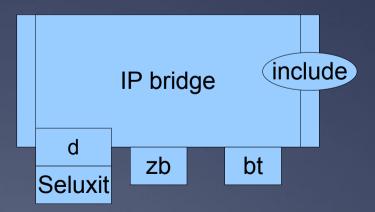
Device discovery on Btnodes

- * Arbitrary sensor application
- * Get descriptor flow



Experiment: Existing equipment

- * Seluxit z-wave adapter
- * Z-wave common interface sw driver module
- * Serial port protocol
- * Wall plugs on/off
- * PIR sensor event
 - * Befolket
 - * Ubefolket



Experiment: Existing equipment

Seluxit adaptor driver (d):

- * (Send message method)
- * Include method -> network equivalent
- * Exclude method -> n.e.
- * Get network list -> n.e.
- * Get_descriptor -> n.e.

The End

* Questions?