
QoS-enabled Middleware for Smart Grids

Abdel Rahman Alkhawaja, Luis Lino Ferreira, Michele Albano, Ricardo Garibay

CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto

R. Dr. António Bernardino de Almeida, 431

4200-072 Porto / Portugal

{abdel,llf,mialb,rgmz}@isep.ipp.pt

I. INTRODUCTION

Emerging smart grid systems must be able to react
quickly and predictably, adapting their operation to changing
energy supply and demand, by controlling energy consuming
and energy storage devices. An intrinsic problem with smart
grids is that energy produced from in-house renewable
sources is affected by fluctuating weather factors. The
applications driving smart grids operation must rely on a
solid communication network that is secure, highly scalable,
and always available. Thus, any communication
infrastructure for smart grids should support its potential of
producing high quantities of real-time data, with the goal of
reacting to state changes by actuating on devices in real-time,
while providing Quality of Service (QoS).

The European project ENCOURAGE [9], which is the
driving force behind this work, addresses the development of
adequate technologies for the optimization of energy
consumption and production in buildings and houses. The
ENCOURAGE platform will be capable of handling
thousands of homes, each with tens of devices that can be
controlled cooperatively. These devices range from
appliances whose loads are controlled by simple on/off
switches, to sophisticated energy producing equipment. Such
a system can be structured upon a Message Oriented
Middleware. The main idea behind its use is to simplify
distributing applications across heterogeneous operating
systems, programming language, computer architectures,
networking protocols, and at the same time reducing the
complexity on the interconnection functionalities and
providing a high level of scalability. In our work, we want to
base this layer on a Message Oriented Middleware (MOM)
[8]. Examples of such technologies are RabbitMQ [2], Data
Distribution Service (DDS) [4] and the Extensible
Messaging and Presence Protocol (XMPP) [3].

II. MESSAGE ORIENTED MIDDLEWARE SOLUTIONS

Message Oriented Middleware (MOM) allows a
simplified connection between distributed applications, since
it allows applications not to know each other’s address
and/or identity. Furthermore, and also very important, the
middleware concurs to the adoption of a same
communication protocol for the application, further easing
the communication activities.

A middleware can also provide some degree of
abstraction from the complexity and heterogeneity of the
underlying communication networks, operating systems,
programming languages and management of distributed

applications, by providing an API that encapsulates the
access to the underlying mechanisms.

A Publish Subscribe Message Oriented Middleware
(PSMOM) provides an asynchronous and highly scalable
many-to-many communication model [6]. In this scheme, the
sender of the message, called publisher, is not aware of the
identity of recipients (subscribers), and it publishes its
messages to the PSMOM. Subscribers are enabled to receive
the messages from the PSMOM by performing subscriptions
of the information they are interested into.

The capabilities of a MOM in relation to QoS play a
critical role in the overall system performance. In the
remainder of this section we analyze the support by selected
MOM protocols, in relation to 4 QoS metrics: latency,
bandwidth, delivery guarantees and, message priority and
ordering [7].

A. Data Distribution Service (DDS).

The Data Distribution Service for Real-Time Systems
(DDS) standard has been designed with an emphasis on
high-performance and predictability, but also to be very
efficient on the use of resources, which are ensured by a
lightweight architecture and by its capabilities to reserve
resources by enforcing QoS on communications and local
execution. DDS is based on the Data Centric Publish-
Subscribe (DCPS) model, which uses specific structures,
identified by a topic and a type. The topic provides an
identifier that uniquely identifies a data item within the
global data space. The type provides structural information,
needed to inform the middleware on how to manipulate the
data and also allows the middleware to provide type safety.

DDS ensures low latency by providing a set of QoS
policies, like guarantees on the maximum latency for data
delivery, latency budget, reliability of data delivery, priority
of data delivery, and deadline policy; this set of QoS policies
can reduce latency and jitter significantly. Latency-budget
policy defines the maximum acceptable delay from the time
the data is written until the data is received by a subscriber
application. Deadline policy specifies the maximum inter-
arrival time between messages, and it defines the maximum
duration that a Data Reader expects to elapse between the
change of a value, and the update of the values contained in
each subscriber’s instance.

DDS controls network bandwidth by using the time-
based-filter policy, which defines the minimum inter-arrival
time between messages. Also, it uses the resource-limit
policy to control the amount of message buffering in the
queues. Those policies lead to minimal waste of network
bandwidth and potentially can provide high throughputs [1].

DDS provides a reliability QoS policy that specifies two
different data delivery guarantee modes: Reliable and Best
Effort. Reliable guarantees mean that all messages in a Data
Writer history will be delivered to the correspondent Data
Reader. Best effort indicates that a message is sent once, and
should the transmission fail, the message will be lost.

DDS provides QoS policies for both the definition of
message transport priority, and to control the order of
received messages. The destination order QoS policies allow
the subscriber to maintain a logical order for the same data
in-stance among changes made by multiple publishers; this is
achieved by using timestamps when a message is produced.

B. Extensible Messaging and Presence Protocol (XMPP).

The Extensible Messaging and Presence Protocol
(XMPP) is an open eXtensible Markup Language (XML)
protocol for near-real-time messaging, presence, and request-
response services [5]. XMPP is based on the client/server
paradigm where clients are interconnected through servers,
although it also supports publish/subscribe model.

XMPP protocol basically is a best effort protocol,
enriched with some Extensions Protocols (XEP) that
supports some QoS functionalities. XEP-0203 protocol
provides timestamp information regarding stored messages,
which can be useful in case of late delivery, so that if a
message is delayed, the original send time can be
determined. XEP-0079 defines the Advanced Message
Processing extensions that enable an application to define
rules to handle time sensitive messages.

XEP-0138 allows negotiating the compression of XML
streams. Jingle RTP Sessions (XEP-0167) protocol enables
applications to communicate through negotiated sessions that
use the Real-time Transport Protocol (RTP) to exchange
voice or video data. This kind of QoS policy has implications
on QoS guarantees on both latency and bandwidth.

In XMPP, the Advanced Message Processing (AMP)
(XEP-0079) protocol allows publisher and subscriber to
define additional delivery semantics for advanced processing
of XMPP message stanzas, including reliable data transport.
Finally, XEP-0168 allows specifying priorities for connected
resources associates with applications.

C. AMQP (RabbitMQ)

RabbitMQ is an open source message broker based on
the Advance Messaging Queue Protocol (AMQP) standard
[5]. It defines both a wire protocol, and a protocol model that
specifies the semantics for AMQP implementations making
AMQP implementations interoperable with other
implementations. AMQP divides the brokering task between
exchanges and message queues, where the first is basically
similar to a router that accepts incoming messages, and,
based on a set of rules or criteria, decides which queues to
route the messages to.

In RabbitMQ, which is an implementation of AMQP, it
uses a method called "pre-fetch" to determine how many
messages will be sent before the consumer acknowledges a
message. The objective is to send messages data in advance,
to reduce latency [7]. It also supports channels, which
provide a way to multiplex one robust TCP/IP connection

into several lightweight connections, making efficient use of
the network, and allowing the available bandwidth to be
shared among concurrent activities.

RabbitMQ uses queues with guaranteed delivery to a
single recipient. It uses different delivery modes, which
specify if the message will need persistence. The messages
that are indicated as persistent will be protected in case of
server reboot by saving them in a persistent log file, and sent
to each application that associates to the middleware, even if
some time has elapsed from whence the message was
published.

RabbitMQ ensures content ordering by exploiting the
TCP/IP transport layer, which the AMQP is built upon.
Messages are delivered in the order in which they are sent.
For prioritizing messages, a publisher can assign a value
from 0 to 9 to each message, to specify a message priority
that ensure transfer between queues according to message’s
priority.

III. CONCLUSIONS

Based on the analysis presented in this work it is possible
to conclude that DDS is the most suitable technology for
smart grid application with QoS requirements, since it
provides more adequate solutions with respect to its
competitors.

ACKNOWLEDGMENT

This work was supported by National Funds through
FCT (Portuguese Foundation for Science and Technology)
and by the EU ARTEMIS JU funding, within
ENCOURAGE project, ref. ARTEMIS/0002/2010, JU grant
nr. 269354.

REFERENCES

[1] A. Corsaro, et al., “Quality of Service in Publish/Subscribe
Middleware”, Global Data Management, IOS Press,2006, pp.20- 20.

[2] A. Videla, J.Williams, “RabbitMQ in Action Distributed Messaging
for Everyone” MEAP Edition, Manning Early Access Program,
RabbitMQ in Action version 8, 2011.

[3] P. Saint-Andre, K. Smith, and R. Tronçon, “XMPP: The Definitive
Guide”, O’Reilly, 2009..

[4] Object Management Group, Inc. (OMG), “Data Distribution Service
for Real-Time Systems Specification”, Version 1.1, formal/05-12-04,
December 2005.

[5] AMQP Advanced Message Queuing Protocol, Protocol Specification,
Version 0-9-1, 13 November 2008,
http://www.rabbitmq.com/resources/specs/amqp0-9-1.pdf.

[6] P. Eugster, P. Felber, R. Guerraoui, A-M. Kermarrec, “The Many
Faces of Publish/Subscribe”, ACM Computing Surveys 35(2), 2003,
pp. 114-131.

[7] S. Behnel, L. Fiege, G. Muhl, "On Quality-of-Service and Publish-
Subscribe,", 26th IEEE International Conference on Distributed
Computing Systems Workshops (ICDCSW'06), 2006, pp.20.

[8] Somaya Arianfar, “Optimizing Publish/Subscribe Systems with
Congestion Handling”, Helsinki University of Technology, 2008.

[9] E. Curry, "Message-Oriented Middleware", in Middleware for
Communica-tions, Q. H. Mahmoud, Ed. Chichester, England: John
Wiley and Sons, 2004, pp. 1-28.

[10] Embedded iNtelligent COntrols for bUildings with Renewable
generAtion and storage (ENCOURAGE), http://www.encourage-
project.eu

http://www.encourage-project.eu/
http://www.encourage-project.eu/

